VALENZISOMERISIERUNGEN AM TETRAMETHYLCYCLOBUTEN 3. Mitteilung x)

Eugen Müller und Andreas Huth Chemisches Institut der Universität, D-74 Tübingen

(Received in Germany 11 August 1972; received in UK for publication 19 September 1972)

In Fortsetzung unserer Arbeiten über das Verhalten von Diäthinyl-substituierten Cyclobutenen x) haben wir trans-3, 4-Diphenyläthinyl-1, 2, 3, 4-tetramethylcyclobuten-(1) (1) mit dienophil wirksamen Acetylenen 1) umgesetzt.

$$\begin{array}{ccc}
H_3C & CH_3 & = -C_6H_5 \\
H_3C & CH_3 & = 1
\end{array}$$

a) Umsetzung von 1 mit Acetylendicarbonsäuredimethylester

Beim Erwärmen von $\frac{1}{2}$ in benzolischer Lösung unter Stickstoff mit Acetylendicarbonsauredimethylester erhält man in 85%iger Ausbeute farblose Kristalle (Fp. 197 °C), die im UV-Licht (354 nm) blaugrün fluoreszieren. Das Massenspektrum der entstandenen Substanz $\frac{1}{2}$ weist einen Molekülpeak bei m/e 452 auf, was auf eine 1:1 Reaktion der beiden Komponenten hindeutet. Die C, H-Analyse steht mit der sich daraus ergebenden Summenformel $C_{30}H_{28}O_{4}$ in Einklang. Im IR-Spektrum tritt eine breite Carbonylbande bei 1730-1750 cm $^{-1}$ auf, die für Ester charakteristisch ist. Im NMR-Spektrum erscheinen neben einem Aromatenberg um τ 3 (10H) zwei Signale bei τ 6, 08 (3H) und τ 6, 58 (3H) für Carbomethoxygruppen und vier Signale bei τ 7, 50 (5H), 7, 60 (3H), 7, 75 (3H) und 8, 25 (3H) für Methylgruppen. Die Verbindung enthält für jede vorhandene Carbomethoxy- wie auch für jede Methylgruppe ein eigenes Signal. Das Molekül muß daher unsymmetrisch sein.

Aufgrund dieser Daten kann man für das Reaktionsprodukt die Struktur eines 1,2-Diphenyl-5,6,7,8-tetramethylnaphthalin-3,4-dicarbonsäuredimethylesters (2) ableiten.

Der Beweis stützt sich auf die alkalische Hydrolyse des Diesters und die anschließende Decarboxylierung der entsprechenden Säure zu einem Kohlenwasserstoff, bei dem es sich um das 1,2-Diphenyl-5,6,7,8-tetramethylnaphthalin (3) handeln sollte. Zum Vergleich wurde das bisher unbekannte 1-Phenyl-5,6,7,8-tetramethylnaphthalin (4), in dem die wichtigsten Strukturmerkmale von 3 enthalten sind, durch Umsetzung von 5,6,7,8-Tetramethyltetralon-(1) interpretation anschließende Dehydratisierung und Dehydrierung dargestellt. Einige Datten des Decarboxylierungsproduktes 3 sind in Tabelle 1 mit denen von 4 verglichen.

τ	JV nm (log £)	MS	NMR (CC14, TMS) 7 (Mul-	t., Integr.)
Decarboxy- lierungs- produkt der	253 (4,75) 310 (3,93)	M ⁺ M-15 ⁺ M-30 ⁺ M-45 ⁺ M-60 ⁺	arom. Protonen 1,95, 2,10, 2,62, 2,77 (2) (AB, J = 9 Hz)	Methylprotonen 7, 31 (3), 7, 57 (3) 7, 72 (3), 8, 23 (3)
Säure von ≧ ≡	3		2,98 (nicht aufgelöst, 10)	
1-Phenyl- 5, 6, 7, 8-tetra methylnaph- thalin (4)	242 (4,77) -310 (4,04)	M ⁺ · M-15 ⁺ M-30 ⁺ · M-45 ⁺	arom. Protonen 1,98, 2,04, 2,09, 2,15 (1) (ABX; J = 7 Hz, 3 Hz) 2,72 (7)	Methylprotonen 7, 40 (3), 7, 62 (3) 7, 75 (3), 8, 15 (3)

Tabelle 1

Die gute Übereinstimmung sowohl der UV-Daten als auch der Lage der Methylsignale in den NMR-Spektren beweist die Richtigkeit unseres Strukturvorschlags 2 für das Umsetzungsprodukt von 1 und Acetylendicarbonsäuredimethylester. Eine Besonderheit in den NMR-Spektren von 2, 3 und 4 ist das für aromatisch gebundene Methylgruppen sehr hoch erscheinende Signal um 78,2. Es wird in allen drei Fällen dadurch verursacht, daß die Phenylgruppe in der 1-Stellung sich wegen einer peri-Wechselwirkung senkrecht zur Naphthalinebene einstellen muß. Die Methylgruppe in der 8-Stellung gerät deswegen in den Wirkungsbereich oberhalb der Phenylebene, was bekanntermaßen zu einer Hochfeldverschiebung führt.

b) Umsetzung mit Propiolsaureathylester

Bei der Umsetzung von ½ mit Propiolsäureäthylester entstehen in 76 % Ausbeute farblose, im UV (354 nm) blau fluoreszierende Kristalle vom Fp. 168-170 °C. Wie aus der Tabelle 2 ersichtlich ist, sind die Daten denen des Reaktionsproduktes der Verbindung ½ sehr ahnlich. Da außerdem bei der Verseifung und Decarboxylierung wie auch schon bei ½ das 1,2-Diphenyl-5,6,7,8-tetramethylnaphthalin (3) entsteht, ist bewiesen, daß der Propiolsäureester analog zum Acetylendicarbonsaureester mit ½ reagiert hat. Wegen der Unsymmetrie der In-Verbindung ergeben sich für das Reaktionsprodukt die zwei Möglichkeiten 5a (1,2-Diphenyl-5,6,7,8-tetramethylnaphthalin-4-carbonsäureäthylester) und 6a (1,2-Diphenyl-5,6,7,8-tetramethylnaphthalin-3-carbonsäureäthylester).

	2	Ums. von 1 mit Propiolsäureäthylester
UV	231 (4, 38), 265, 5 (4, 72), 340 (3, 78)	232, 5 (4, 42), 262, 5 (4, 72), 332 (3, 99)
IR (Carbonyl)	1730-1750 cm ⁻¹	1720 cm ⁻¹
NMR	3, 0 (nicht aufgelöst, 10)	2,28 (1), 2,9 (nicht aufgelöst, 10)
(CDCl ₃ , TMS)	6, 08 (3); 6, 58 (3)	5, 53 (q; J=7Hz; 2), 8, 58 (t; J=7Hz; 3)
γ (Mult., Integr.)	7, 50 (3), 7, 60 (3), 7, 75 (3), 8, 25 (3	7, 46 (3), 7, 56 (3), 7, 70 (3), 8, 21 (3)

Tabelle 2

$$CH_3 C_6H_5$$
 $CH_3 C_6H_5$
 $CH_3 C_6H_5$

Durch eine Lithiumalanatreduktion des Esters (5a oder 6a) zum entsprechenden Alkohol (5b oder 6b) läßt sich in einfacher Weise zwischen den beiden Strukturen 5a oder 6a entscheiden. Im NMR-Spektrum des Reduktionsproduktes (Tabelle 3) erscheinen sowohl eine der Methylgruppen als auch die Methylenprotonen der Hydroxymethylgruppe bei tieferem Feld als normal.

Tabelle 3

NMR des Reduktionsprod. von 5a oder 6a, (CCl4, TMS), 7 (Mult., Integr.)						
arom. Protonen	Methylenprotonen	Methylprotonen				
2,95 (nicht aufgelöst, 10)	der CH ₂ OH-Gruppe	7,25 (3), 7,60 (3), 7,75 (3), 8,30 (3)				
2,58 (1)	5, 00 (2)					

Dieser Effekt läßt sich auf eine sterische Behinderung beider Gruppen zurückführen. Wie eine Modellbetrachtung zeigt, enthält aber nur das der Formel $\underline{5}$ entsprechende Reduktionsprodukt eine CH $_3$ - und eine CH $_2$ OH-Gruppierung, die sich - aufgrund der peri-Stellung - behindern können. Damit ist sichergestellt, daß bei der thermischen Reaktion von $\underline{1}$ mit Propiolsäureäthylester 1, 2-Diphenyl-5, 6, 7, 8-tetramethylnaphthalin-4-carbonsäureäthylester ($\underline{5}\underline{a}$) entsteht.

c) Umsetzung mit Phenylacetylen

Die Umsetzung liefert in 85 % Ausbeute farblose Kristalle (Fp. 226 °C). Aus dem NMR-Spektrum (Tabelle 4) ist ersichtlich, daß eine weitere Methylgruppe eine Hochfeldverschiebung erfahren hat. Daraus läßt sich für das Reaktionsprodukt die Struktur eines 1, 2, 4-Triphenyl-5, 6, 7, 8-tetramethylnaphthalins (7) ableiten.

NMR des Umsetzungsprod. von 1 mit Phenylacetylen, (CCl4, TMS) 7 (Mult., Integr.)					
Phenylprotonen	Naphthalinproton	Methylprotonen			
2,65 (5), 2,95 (nicht aufgelöst, 10)	2,71 (1)	7,68, 7,70 (nicht aufgelöst, 6)			
		8, 07 (3), 8, 25 (3)			

d) Zum Reaktionsmechanismus

Analog der Umsetzung mit O_2^{-x} nehmen wir als ersten Schritt die conrotatorische Ringöffnung von $\frac{1}{2}$ zum cis-cis-1, 8-Diphenyl-3, 4, 5, 6-tetramethyloctadien-(3, 5)-diin-(1, 7) ($\frac{8}{2}$) an. Eine direkte Weiterreaktion von $\frac{8}{2}$ mit den Acetylenen ist sehr unwahrscheinlich, da die gebildeten unsymmetrischen Produkte $\frac{2}{2}$, $\frac{5}{2}$, $\frac{7}{2}$ nur über Umwege erklärt werden könnten. Deswegen bleibt als einzige Möglichkeit, daß sich aus dem Ringöffnungsprodukt $\frac{8}{2}$ zunächst das 7, 8-Diphenyl-1, 2, 3, 4-tetramethylbenzocyclobutadien ($\frac{9}{2}$) bildet, das mit den Acetylenen in einer Diels-Alder-Reaktion zu den entsprechenden Dewar-Naphthalinen ($\frac{1}{2}$ 0) reagiert, die sich zu den Naphthalinen $\frac{2}{2}$, $\frac{5}{2}$, $\frac{7}{2}$ umlagern.

$$\underbrace{1}_{H_{3}C} \xrightarrow{CH_{3}} \xrightarrow{C_{6}H_{5}} \xrightarrow{C_{6}H_{5}} \xrightarrow{C_{6}H_{5}} \xrightarrow{H_{3}C} \xrightarrow{CH_{3}} \xrightarrow{C_{6}H_{5}} \xrightarrow{L_{8}-R} \xrightarrow{H_{3}C} \xrightarrow{CH_{3}} \xrightarrow{C_{6}H_{5}} \xrightarrow{L_{8}-R} \xrightarrow{L_{8}-R} \xrightarrow{H_{3}C} \xrightarrow{C_{6}H_{5}} \xrightarrow{L_{8}-R} \xrightarrow{L_$$

Gestützt wird dieser Mechanismus durch die Tatsache, daß Benzocyclobutadien mit dem Dienophil N-Phenylmaleinimid ebenfalls unsymmetrisches 1,2-Dihydro-naphthalin-1,2-dicarbonsäure-anhydrid bildet ⁵⁾. Die im vorangehenden beschriebene Reaktion, deren wichtigster Teil in der Valenzisomerisierung eines Cyclobutens ^{x)} besteht, eröffnet einen neuen Zugang zu einer Reihe hochsubstituierter Naphthaline. Die ausführliche Veröffentlichung erfolgt an anderer Stelle.

Literatur

- x) E. Müller und A. Huth, Tetrahedron Letters 1972, 1035.
- 1) Mit Acetylenen zu geringen Dienophilcharakters wie Butin-(2) und Butin-(2)-1, 4-diol oder mit solchen sterischer Hinderung wie Tolan gelingt die Umsetzung nicht.
- 2) Für diese Verbindungen liegen ausreichende Elementaranalysen vor.
- 3) dargestellt nach: M. C. Klötzel, R. P. Dayton, H. L. Herzog, J. Am. Chem. Soc. 72, 273 (1950)
- 4) analog zu W. Carruthers und J.D. Gray, J. Chem. Soc. 1958, 1280.
- 5) M. P. Cava, M. J. Mitchell, J. Am. Chem. Soc. 81, 5409 (1959).